If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+350t+2400=0
a = 4.9; b = 350; c = +2400;
Δ = b2-4ac
Δ = 3502-4·4.9·2400
Δ = 75460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{75460}=\sqrt{196*385}=\sqrt{196}*\sqrt{385}=14\sqrt{385}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(350)-14\sqrt{385}}{2*4.9}=\frac{-350-14\sqrt{385}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(350)+14\sqrt{385}}{2*4.9}=\frac{-350+14\sqrt{385}}{9.8} $
| 4=m*2 | | 4(16u+11)-15u=18u+13 | | 5/8+a/8=1 | | 2x-8x-11=-6x+7-11 | | 10^x=5.3 | | 5p−7+13−2p=3(p+2) | | 115=8x+9 | | 1/2(2x-10)=0 | | x=0.15x75 | | 4y+17=4y+17 | | 30=60/x | | -12g^2-4g=0 | | 25.41=18.71+5x | | 6x+2(x-5)=4(2x-4) | | 26+9h=4-3(h+3)-6h | | 10a2−128=−11a+8a2−7 | | 25^2+15y=-21 | | 12x^-x-6=0 | | x-65=126 | | 10.50d+d=20 | | 2x-1.8=3x-3.6 | | 8x+9=115 | | 8(3-3h)+14=-202 | | 9+7r=7r+9 | | -96=6(3x-4) | | 2x^-5x+3=0 | | 3p-8=13+4p | | 6f+(-3f)+(-15f)= | | 5×x+3=33 | | n+15=100-25 | | 7r+9=9+7r | | 5(9k+1)= |